
 
 

CHAPTER 10. CALCULATION OF PRINCIPAL AND EQUIVALENT STRESSES 

 

When calculating building structures, there is no need to determine the stresses for all 

directions passing through a given point, but it is enough to know the minimum and maximum 

stress values. The minimum and maximum normal stresses are called the principal stresses, and the 

directions on which they act are called the main directions. 

 

10.1 PRINCIPAL STRESSES 

 

Principal stresses and unit vectors of the normals to the main areas completely characterize 

the stress state at the point [10.1], that is, they allow calculating all components of the stress tensor. 

 
Fig. 10.1. Elementary tetrahedron with stress state components 

 

 Normal stresses are defined by the letter 𝜎 with an index corresponding to the normal to 

the direction on which they act. Tangential stresses are defined by the letter 𝜏 with two indices: the 

first corresponds to the normal to the direction, and the second corresponds to the direction of the 

stress itself. 

 

It is assumed that the plane crossing the coordinate axes has a unit normal vector 𝑛⃗  with the 

components 𝑛𝑥, 𝑛𝑦, 𝑛𝑧. On the faces of the infinitely small tetrahedron obtained in this way, the 

stresses shown in Fig. 10.1. In this case, the stress vector 𝑝  on the inclined direction is decomposed 

into components 𝑝𝑥, 𝑝𝑦, 𝑝𝑧 along the coordinate axes. The areas of the faces orthogonal to the 

coordinate axes and the normal vector will be defined by 𝑑𝐹𝑥, 𝑑𝐹𝑦, 𝑑𝐹𝑧, 𝑑𝐹𝑝 respectively. 
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These areas are related by: 

𝑑𝐹𝑥 = 𝑑𝐹𝑝 ⋅ 𝑛𝑥,   𝑑𝐹𝑦 = 𝑑𝐹𝑝 ⋅ 𝑛𝑦,   𝑑𝐹𝑧 = 𝑑𝐹𝑝 ⋅ 𝑛𝑧,   (10.1) 

arising from the fact that the faces orthogonal to the coordinate axes are projections of the inclined 

directions onto the corresponding coordinate plane. 

By projecting the forces acting on the faces of the elementary tetrahedron onto the coordinate 

axes, we obtain the equilibrium equations for the considered volume. For example, the projections 

of all surface forces on the x-axis give: 

𝑝𝑥𝑑𝐹 − 𝜎𝑥𝑑𝐹𝑥 − 𝜏𝑦𝑥𝑑𝐹𝑦 − 𝜏𝑧𝑥𝑑𝐹𝑧 = 0. 

Taking into account relations (10.1), after reduction by 𝑑𝐹𝑝 we obtain an equation relating the 

projection 𝑝𝑥 of the stress vector with the corresponding components of the stress tensor. 

Combining this equation with two similar equations obtained by projecting forces on the Y and Z 

axes, we result in the Cauchy formulas: 

𝑝𝑥 = 𝜎𝑥𝑛𝑥 + 𝜏𝑦𝑥𝑛𝑦 + 𝜏𝑧𝑥𝑛𝑧 , 

𝑝𝑦 = 𝜏𝑥𝑦𝑛𝑥 + 𝜎𝑦𝑛𝑦 + 𝜏𝑧𝑦𝑛𝑧, 

𝑝𝑧 = 𝜏𝑥𝑧𝑛𝑥 + 𝜏𝑦𝑧𝑛𝑦 + 𝜎𝑧𝑛𝑧 ,     (10.2) 

These formulas define the stress vector on an arbitrarily chosen area with the normal vector 𝑛⃗   

through the components of the stress tensor [𝜎]: 

[𝜎] = [

𝜎𝑥 𝜏𝑦𝑥 𝜏𝑧𝑥

𝜏𝑥𝑦 𝜎𝑦 𝜏𝑧𝑦

𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧

], 

From which, according to the law of pairing of shear stresses, it goes: 

𝜏𝑥𝑦 = 𝜏𝑦𝑥, 𝜏𝑦𝑧 = 𝜏𝑧𝑦, 𝜏𝑥𝑧 = 𝜏𝑧𝑥, 

And only six stress components will be independent [10.2]. 

Formulas (10.2) allow to calculate through the components of the stress tensor the following: 

• full stress 

𝑝𝑛 = √𝑝𝑥
2 + 𝑝𝑦

2 + 𝑝𝑧
2;      (10.3) 

• normal stress 

𝜎𝑛 = 𝑝𝑥𝑛𝑥 + 𝑝𝑦𝑛𝑦 + 𝑝𝑧𝑛𝑧;    (10.4) 

• tangential stress 

𝜏𝑛 = √𝑝𝑛
2 − 𝜎𝑛

2.     (10.5) 

Among all the possible directions of the normal vector 𝑛⃗  there are those for which the stress 

vector 𝑝  is parallel to the vector 𝑛⃗ . Only normal stresses act on the corresponding directions, and 

there are no tangential stresses - such directions are called principal, and normal stresses on these 

directions are called principal stresses. Let the direction with a unit normal vector be the main one. 

The conditions for the parallelism of the vectors 𝑝  и 𝑛⃗  are the conditions for the proportionality of 

their components: 

𝑝𝑥 = 𝜎 ⋅ 𝑛𝑥, 𝑝𝑦 = 𝜎 ⋅ 𝑛𝑦,𝑝𝑧 = 𝜎 ⋅ 𝑛𝑧. 

Taking into account the Cauchy formulas, we obtain a system of linear homogeneous 

equations for the unknown components 𝑛𝑥, 𝑛𝑦, 𝑛𝑧 of the normal vector to the main direction: 

(𝜎𝑥 − 𝜎)𝑛𝑥 + 𝜏𝑦𝑥𝑛𝑦 + 𝜏𝑧𝑥𝑛𝑧 = 0, 

𝜏𝑥𝑦𝑛𝑥 + (𝜎𝑦 − 𝜎)𝑛𝑦 + 𝜏𝑧𝑦𝑛𝑧 = 0, 

𝜏𝑥𝑧𝑛𝑥 + 𝜏𝑦𝑧𝑛𝑦 + (𝜎𝑧 − 𝜎)𝑛𝑧 = 0.         (10.6) 
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This system of equations has a non-zero solution if the determinant composed of the 

coefficients of the equations vanishes: 

|

𝜎𝑥 − 𝜎 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑥𝑦 𝜎𝑦 − 𝜎 𝜏𝑦𝑧

𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧 − 𝜎
| = 0.       (10.7) 

Expanding the determinant, we arrive at the cubic equation: 

𝜎3 − 𝐽1𝜎
2 + 𝐽2𝜎 − 𝐽3 = 0.       (10.8) 

And the following notation is introduced for the coefficients: 

𝐽1 = 𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧, 

𝐽2 = |
𝜎𝑥 𝜏𝑥𝑦

𝜏𝑥𝑦 𝜎𝑦
| + |

𝜎𝑥 𝜏𝑥𝑧

𝜏𝑥𝑧 𝜎𝑧
| + |

𝜎𝑦 𝜏𝑦𝑧

𝜏𝑦𝑧 𝜎𝑧
| = 𝜎𝑥𝜎𝑦 + 𝜎𝑥𝜎𝑧 + 𝜎𝑦𝜎𝑧 − 𝜏𝑥𝑦

2 − 𝜏𝑥𝑧
2 − 𝜏𝑦𝑧

2 , (10.9) 

𝐽3 = |

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑥𝑦 𝜎𝑦 𝜏𝑦𝑧

𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧

| = 𝜎𝑥𝜎𝑦𝜎𝑧 + 2𝜏𝑥𝑦𝜏𝑥𝑧𝜏𝑦𝑧 − 𝜎𝑥𝜏𝑦𝑧
2 − 𝜎𝑦𝜏𝑥𝑧

2 − 𝜎𝑧𝜏𝑥𝑦
2 . 

Equation (10.7) is called the characteristic equation for the stress tensor. The cubic equation 

(10.8) has three real roots 𝜎𝑖 , 𝑖 = 1,2,3, which are usually ordered 𝜎1 ≥ 𝜎2 ≥ 𝜎3. Principal stresses 

do not depend on the choice of coordinate system and they are invariant. The equation (10.8) can be 

written as: 

(𝜎1 − 𝜎)(𝜎2 − 𝜎)(𝜎3 − 𝜎) = 0. 

Having compared with (10.8), we obtain formulas for the coefficients: 

𝐽1 = 𝜎1 + 𝜎2 + 𝜎3, 𝐽2 = 𝜎1𝜎2 + 𝜎1𝜎3 + 𝜎2𝜎3, 𝐽3 = 𝜎1𝜎2𝜎3,  

The coefficients of the characteristic equation are called stress tensor invariants. 

Each value of 𝜎𝑖 corresponds to the vector 𝑛⃗ 𝑖, which characterizes the position of the i -th 

main direction, with components 𝑛𝑖𝑥, 𝑛𝑖𝑦, 𝑛𝑖𝑧, vectors 𝑛⃗ 𝑖 and 𝑛⃗ 𝑗  are orthogonal at 𝑖 ≠ 𝑗. To find the 

components of the vectors 𝑛⃗ 𝑖 it is sufficient to substitute the found value 𝜎𝑖  into equations (10.6) 

and solve any two of these equations together with the normalization condition: 

𝑛𝑖𝑥
2 + 𝑛𝑖𝑦

2 + 𝑛𝑖𝑧
2 = 1. 

Having solved the system (10.6) three times, the matrix of direction cosines is obtained: 

[𝐴] = [

𝑛1𝑥 𝑛1𝑦 𝑛1𝑧

𝑛2𝑥 𝑛2𝑦 𝑛2𝑧

𝑛3𝑥 𝑛3𝑦 𝑛3𝑧

].     (10.10) 

The direction of principal stresses can also be determined by three Euler's angles relative to 

the local coordinate system (Figure 10.2): 

• 𝜃 (nutation angle) is the angle between the positive directions of the 𝑂𝑍1 and 𝜎3 (0 ≤ 𝜃 ≤

𝜋) axes. 

• 𝜓 (precession angle) is the angle between the 𝑂𝑋1 and 𝑂𝐴  axes (the line of intersection of 

the 𝑋1𝑂𝑌1 and 𝜎1𝑂𝜎2), the positive direction of which is chosen so that 𝑂𝐴, 𝑂𝑍1 and 𝜎1 form a 

right triple. The angle 𝜓 is measured from the 𝑂𝑋1 axis to the 𝑂𝑌1  axis (0 ≤ 𝜓 ≤ 2𝜋). 

• 𝜙 (pure rotation angle) — the angle between the 𝑂𝐴 and 𝜎1 axes is measured from the 𝜎1 

axis to 𝜎2 (0 ≤ 𝜙 ≤ 2𝜋). 

Euler's angles are defined as follows: 𝜃 = 𝑎𝑟𝑐𝑐𝑜𝑠(𝑛3𝑧). For 𝜃 = 0, 𝜙 = 0, 𝜓 =

𝑎𝑟𝑐𝑠𝑖𝑛(𝑛1𝑦), and if 𝑛1𝑥 < 0, then 𝜓 = 𝜋 − 𝑎𝑟𝑐𝑠𝑖𝑛(𝑛1𝑦). If 𝜓 < 0, then 𝜓 = 𝜓 + 2𝜋. 
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Fig. 10.2. Euler’s angles relative to the local coordinate system 

 

Further, 𝜙 = 𝑎𝑟𝑐𝑠𝑖𝑛(
𝑛3𝑧

√1−𝑛3𝑧
2
), and if (

𝑛2𝑧

√1−𝑛3𝑧
2
) < 0, then 𝜙 = 𝜋 − 𝑎𝑟𝑐𝑠𝑖𝑛 (

𝑛1𝑧

√1−𝑛3𝑧
2
). If 𝜙 <

0, then 𝜙 = 𝜙 + 2𝜋. 

Using Hook's law, we obtain the main total relative elongations in the direction of the main 

stresses: 

𝜀1 =
1

𝐸
[𝜎1 − 𝑣 ⋅ (𝜎2 + 𝜎3)], 

𝜀2 =
1

𝐸
[𝜎2 − 𝑣 ⋅ (𝜎1 + 𝜎3)], 

𝜀3 =
1

𝐸
[𝜎3 − 𝑣 ⋅ (𝜎1 + 𝜎2)]. 

For an isotropic body, angular deformations do not affect linear ones and vice versa. 

To characterize the stress-strain state, the Lode-Nadai coefficient is calculated, which 

characterizes the type of stress-strain state [10.3]: 

𝜇 = 2
𝜎2−𝜎3

𝜎1−𝜎3
− 1.    (10.11) 

Using the formula (10.11), the value of the parameter μ (Lode Nai) is calculated. And with the 

following values (1,0,-1), the structure or the studied area undergoes (tension, compression or 

shear) 

𝜇 = 1 —pure compression; 

𝜇 = 0 — pure shift; 

𝜇 = −1 — pure tension. 

 

 Principal stresses have an important property: compared to all other directions, the 

normal stresses on the principal directions take on extreme values. To prove this property, it is 

necessary to study the normal stress for an extremum as a function of 𝑛𝑥, 𝑛𝑦, 𝑛𝑧 with an additional 

constraint 𝑛𝑖𝑥
2 + 𝑛𝑖𝑦

2 + 𝑛𝑖𝑧
2 = 1. 
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Let us introduce the concept of average stress (hydrostatic pressure): 

𝜎0 = (𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧)/3 = (𝜎1 + 𝜎2 + 𝜎3)/3. 

The stress tensor can be represented as the sum of two tensors [𝜎] = [𝑠̃] + [𝑑̃], 

where 

[𝑠̃] = [

𝜎0 0 0
0 𝜎0 0
0 0 𝜎0

] , [𝑑̃] = [

𝜎𝑥 − 𝜎0 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑥𝑦 𝜎𝑦 − 𝜎0 𝜏𝑦𝑧

𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧 − 𝜎0

]. 

The first tensor is called spherical and it characterizes the change in the volume of the body 

without changing its shape. The second tensor, called the deviator, characterizes the change in 

shape. A feature of the stress deviator is the equality to zero of its first invariant  𝐽1 = 𝜎𝑥 + 𝜎𝑦 +

𝜎𝑧 − 3𝜎0 = 0. 

 

Three-dimensional elasticity problem 

For solid finite elements, using the above formulas, the following are calculated: 

• principal stresses 𝜎1, 𝜎2 and 𝜎3; 

• Euler’s angles 𝜃, 𝜓 and 𝜙; 

• maximum tangential stress 𝜏
𝜎1−𝜎3

2 𝑚𝑎𝑥
; 

• principal strains 𝜀1, 𝜀2 and 𝜀3; 

• Lode-Nadai coefficient 𝜇. 

 

The determination of the principal stresses in this case is made from the cubic equation 

constructed for the stress deviator: 

𝑆3 + 𝑝𝑆 + 𝑞 = 0,     (10.12) 

where 

𝑝 = (𝑆𝑥𝑆𝑦 + 𝑆𝑥𝑆𝑧 + 𝑆𝑦𝑆𝑧 − 𝜏𝑥𝑦
2 − 𝜏𝑥𝑧

2 − 𝜏𝑦𝑧
2 ), 

𝑞 = −(𝑆𝑥𝑆𝑦𝑆𝑧 + 2𝜏𝑥𝑦𝜏𝑥𝑧𝜏𝑦𝑧 − 𝑆𝑥𝜏𝑦𝑧
2 − 𝑆𝑦𝜏𝑥𝑧

2 − 𝑆𝑧𝜏𝑥𝑦
2 ), 

𝑆𝑥 = 𝜎𝑥 − 𝜎0, 𝑆𝑦 = 𝜎𝑦 − 𝜎0, 𝑆𝑧 = 𝜎𝑧 − 𝜎0, 

𝜎0 = (𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧)/3, 𝑆𝑥 + 𝑆𝑦 + 𝑆𝑧 = 0. 

Equation roots (10.12): 

𝑆1 = 2 ⋅ √𝑟 ⋅ 𝑐𝑜𝑠(𝜔) , 

𝑆3 = −2 ⋅ √|𝑟| ⋅ 𝑐𝑜𝑠 (𝜔 +
𝜋

3
) , 

𝑆2 = −2 ⋅ √|𝑟| ⋅ 𝑐𝑜𝑠 (𝜔 −
𝜋

3
),    (10.13) 

where           

𝜔 =
1

3
𝑎𝑟𝑐𝑐𝑜𝑠 (−

𝑞

2⋅𝑟√𝑟
). 𝑟 = 𝑝/3,

  
Principal stresses are calculated by the formula: 

𝜎𝑖 = 𝑆𝑖 + 𝜎0.     (10.14) 

Then the direction cosine matrix is calculated (10.10).  

  



CHAPTER 10. CALCULATION OF PRINCIPAL AN EQUIVALENT STRESSES 

6 

Plane elasticity problem 

A plane stress state is modeled in the 𝑋1𝑂𝑍1 plane. The characteristic equation in the case of a 

plane stress state has the form: 

|
𝜎𝑥 − 𝜎 𝜏𝑥𝑧

𝜏𝑥𝑧 𝜎𝑧 − 𝜎| = 0, 

and in the case of plane deformation: 

|

𝜎𝑥 − 𝜎 0 𝜏𝑥𝑧

0 𝜎𝑦 − 𝜎 0

𝜏𝑥𝑧 0 𝜎𝑧 − 𝜎
| = 0. 

Principal stresses are calculated on the mid-surface at the center of gravity of each finite 

element. In the case of a plane stress state, principal stresses are equal to: 

𝜎1,3 =
𝜎𝑥+𝜎𝑧

2
± √(

𝜎𝑥+𝜎𝑧

2
)
2

+ 𝜏𝑥𝑧
2 , 𝜎2 = 0,   (10.15) 

and in the case of plane deformation: 

𝜎1,3 =
𝜎𝑥+𝜎𝑧

2
± √(

𝜎𝑥+𝜎𝑧

2
)
2

+ 𝜏𝑥𝑧
2 , 𝜎2 = 𝜎𝑦.   (10.16) 

The angle of inclination of the largest principal stress 𝜎1 to the axis 𝑂𝑋1: 

𝜙 = 𝑎𝑟𝑐𝑡𝑔 (
𝜎1−𝜎𝑥

𝜏𝑥𝑧
),     (10.17) 

if 𝜏𝑥𝑧 = 0, then 𝜙 = 0. 

 

FE of plate 

The stress state in the 𝑋1𝑂𝑌1, plane, characterized by bending forces, is simulated. Stresses 

are calculated for the bottom and top surfaces: 

𝜎𝑥

𝐵
𝐻⁄ = ±

6𝑀𝑥

ℎ2 , 𝜎𝑦

𝐵
𝐻⁄ = ±

6𝑀𝑦

ℎ2 , 𝜏𝑥𝑦

𝐵
𝐻⁄ = ±

6𝑀𝑥𝑦

ℎ2 ,   (10.18) 

where h is the plate thickness. 

Principal stresses and their slope angles are calculated by formulas (10.15) and (10.17). 

Tangential stresses occur in the middle surface: 

𝜏𝑥𝑧 = 1.5
𝑄𝑥

ℎ
, 𝜏𝑦𝑧 = 1.5

𝑄𝑦

ℎ
,    (10.19) 

which are ignored when calculating the principal stresses. 

 

FE of shell 

The stress state is simulated (in the 𝑋1𝑂𝑌1 plane), which is characterized by normal and 

tangential stresses in the middle surface, as well as by bending forces. Stresses are calculated for the 

bottom and top surface: 

𝜎𝑥

𝐵
𝐻⁄ = 𝑁𝑥 ±

6𝑀𝑥

ℎ2 , 𝜎𝑦

𝐵
𝐻⁄ = 𝑁𝑦 ±

6𝑀𝑦

ℎ2 , 𝜏𝑥𝑦

𝐵
𝐻⁄ = 𝑁𝑥𝑦 ±

6𝑀𝑥𝑦

ℎ2 ,  (10.20) 

In the middle surface 𝜎𝑥 = 𝑁𝑥, 𝜎𝑦 = 𝑁𝑦, 𝜏𝑥𝑦 = 𝑁𝑥𝑦, the effect of stresses 𝜏𝑥𝑧, 𝜏𝑦𝑧 (10.19) 

from shear forces is ignored. Principal stresses for these surfaces and their angles of inclination are 

calculated by the formula (10.15) и (10.17). 
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10.2 EQUIVALENT STRESSES 

 

The strength calculation of simple stress states, particularly, uniaxial and pure shear, is 

relatively simple, since these stress states are reproduced in tensile and torsion tests of rods. The 

danger of acting stresses can be judged by comparing them with the experimentally obtained value 

(with the yield strength for plastic materials or with the tensile strength for brittle bodies). But more 

often there are cases when the stress state is not uniaxial, but complex. It is technically impossible 

to test materials under a complex stress state due to the infinite number of these stress states. 

Therefore, the way was chosen to reduce the complex stress state to its equivalent simple, uniaxial, 

and compare the equivalent stress with the limiting uniaxial, determined experimentally. When 

reducing a complex stress state to an equivalent one, a certain criterion is usually used, namely, the 

theory of strength. Strength theories make it possible to find the equivalent stress as a function of 

principal stresses. 

Determining the true cause of the destruction of the material is a difficult task, which did not 

allow the creation of a unified general theory of strength and led to the emergence of many theories 

of strength, each of which is based on its own failure criteria [10.4]. 

Table 10.1 shows the characteristics of the implemented strength theories. 

 

Table 10.1 

№ 

 

The  strength 

theory title 
Formula 

Geometric 

interpretation 
Notes 

1 2 3 4 5 

1 
Maximum 

principal stresses 

𝜎𝐸 = 𝜎1, 
𝜎𝑆 = 𝜎3 

A cube with a center 

shifted relative to the 

origin in the direction of 

hydrostatic pressure 

Historically, the first theory of 

strength was proposed by 

G. Galilei. 

It satisfactorily describes the limit 

state of very brittle, sufficiently 

homogeneous materials, such as 

glass, gypsum, some types of 

ceramics 

2 
Maximum 

principal strains 

𝜎𝐸 = 𝜎1 − 𝜈 ⋅ (𝜎2 + 𝜎3), 
𝜎𝑆 = 𝜎3 − 𝜈 ⋅ (𝜎1 + 𝜎2) 

An equilateral oblique 

parallelepiped with an 

axis of symmetry equally 

inclined to the coordinate 

axes 

It was proposed by E. Mariotte and 

developed by Saint-Venant. Due to 

low reliability, currently it is used 

very rarely. 

3 
Maximum shear 

stresses 

𝜎𝐸 = 𝜎1 − 𝜎3, 
𝜎𝑆 = 0 

Regular hexagonal prism, 

equally inclined to the 

coordinate axes 

It was proposed by C. Coulomb. It 

satisfactorily describes the limiting 

state of plastic low-hardening 

materials (tempered steels), 

characterized by localization of 

plastic deformations 
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Table 10.1 (continuation) 

1 2 3 4 5 

4 

Energy of 

Huber-Hencky-

von Mises 

𝜎Е = 𝜎𝑖 , 
𝜎𝑆 = 0 

Circular cylinder 

circumscribed 

around a prism 

interpreting the 

theory of maximum 

shear stresses 

It was proposed by M. Huber, 

H. Hencky, R. von Mises and 

describes the limit state of a 

wide class of ductile materials 

(copper, nickel, aluminum, 

carbon and chromium-nickel 

steels) rather well 

 5 Mohr theory 
𝜎Е = 𝜎1 − 𝜒 ⋅ 𝜎3, 

𝜎𝑆 =
𝜎1

𝜒
− 𝜎3 

Hexagonal pyramid 

equally inclined to 

the axes 

It is applied to establish the 

limit state of sufficiently 

homogeneous materials that 

resist tension and compression 

in different ways 

6 
Drucker-Prager 

theory 

At 𝜎0 ≤ 0 

𝜎𝐸 = (𝜒 − 1) ⋅ 𝜎0 +
𝜎𝑖

3
(𝜒 + 2). 

At 𝜎0 > 0 

𝜎𝐸 = (1 −
1

𝜒
) ⋅ 𝜎0 +

𝜎𝑖

3
(1 +

2

𝜒
). 

𝜎𝑆 = 0 

Two-sheeted 

paraboloid of 

revolution, equally 

inclined to the 

coordinate axes 

It satisfactorily describes the 

limiting state of relatively 

plastic materials, for which the 

parameter  𝜒 > 0.3  

7 
Pisarenko-

Lebedev theory  

𝛼 =
27𝐽3

2𝜎𝑖
3  at 𝜎𝑖 ≤ 0 — 𝛼 = 0.

 At 𝜎0 ≤ 0 

𝜎Е = (𝜒 − 1)𝜎0 + 

+
𝜎𝑖

3
[3 − (1 − 𝜒)(√3 𝑐𝑜𝑠 𝜓

− 𝑠𝑖𝑛 𝜓)].

 
At 𝜎0 > 0 

𝜎Е = (1 −
1

𝜒
)𝜎0 + 

+
𝜎𝑖

3𝜒
[3 − (1 − 𝜒)(√3 𝑐𝑜𝑠 𝜓

− 𝑠𝑖𝑛 𝜓)].

 
𝜎𝑆 = 0 

It is a conical 

surface 

circumscribed 

around the Mora 

pyramid. In the 

section of the 

octahedral plane 

there is an 

equilateral 

curvilinear triangle 

It describes the limiting state 

of a wide class of fairly 

homogeneous structural 

materials rather well. When 

𝑅𝑡 = 𝑅𝑐 it is converted into an 

energy theory. In the case 

when 𝑅𝑡 << 𝑅𝑐 (very brittle 

materials), the calculation 

results practically coincide 

with the calculation data 

according to the theory of the 

largest principal stresses 

8 Geniev threory 

At 𝜎0 ≤ 0 

𝜎Е = −3𝜎0(1 − 𝜒) + 𝛽𝜎𝑖
2.

 
At 𝜎0 > 0 

𝜎Е = −3𝜎0 (
1

𝜒
− 1) +

𝛽

𝜒
𝜎𝑖

2. 

𝜎𝑆 = 0 

— 
Describes the limit state of 

concrete rather well 

9 
Coulomb – 

Mohr theory 

𝜎𝐸 = (1 − 𝜒) (𝜎0 −
𝜎𝑖 𝑠𝑖𝑛 𝜓

3
) + 

+(1 + 𝜒)
𝜎𝑖 𝑐𝑜𝑠 𝜓

√3
, 

𝜎𝑆 = 0 

— Soil 

10 Botkin theory  
𝜎𝐸 =

1

2
[3𝜎0(1 − 𝜒) + 𝜎𝑖(1 − 𝜒)], 

𝜎𝑆 = 0 

— Soil 
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Type Codes 

𝜎𝐸 — is the equivalent tensile stress; 

𝜎𝑆 — is the equivalent compressive stress; 

𝜎1, 𝜎2, 𝜎3 — Principal stresses; 

𝜎0 =
𝜎1+𝜎2+𝜎3

3
 — is the mean stress; 

𝜎𝑖 = √
(𝜎1−𝜎2)2+(𝜎2−𝜎3)2+(𝜎3−𝜎1)2

2
 — stress intensity; 

𝛼 =
27𝐽3

2𝜎𝑖
3 , 𝜓 =

1

3
𝑎𝑟𝑐𝑠𝑖𝑛(𝛼), 𝐽3 = (𝜎1 − 𝜎0)(𝜎2 − 𝜎0)(𝜎3 − 𝜎0); 

𝜎𝑡 , 𝜎𝑐 — ultimate tensile and compressive stresses, for soils 𝜎𝑡 =
2𝐶 𝑐𝑜𝑠 𝜙

1+𝑠𝑖𝑛𝜙
, 𝜎𝑐 =

2𝐶 𝑐𝑜𝑠 𝜙

1−𝑠𝑖𝑛𝜙
; 

𝐶 — specific cohesion; 

𝜙 — angle of internal friction; 

𝜒 = |
𝜎𝑡

𝜎𝑐
|, 𝛽 = |

1

𝜎𝑐
|. 

 

Calculation of principal and equivalent stresses in plate and solid finite elements by forces 

from individual load cases, as well as by design combination of loads (DCL) or design combination 

of forces (DCF) is performed at the moment of displaying this information on the screen. 

To visualize principal and equivalent stresses in plate finite elements, the Principal and 

Equivalent Stresses of Plates mode is provided in the calculation results. Switching to the mode is 

carried out using the menu command Results  Stresses in plates of the same command name 

Results on the ribbon tab or the button  on the toolbar. 

To visualize principal and equivalent stresses in solid finite elements, the Principal and 

Equivalent Stresses of Solid Elements mode is provided in the calculation results. Switching to 

the mode is carried out using the menu command Results  Stresses in Solid FE, the command of 

the same name on the Results tab of the ribbon, or the button   on the toolbar.  

The modes are described in detail in paragraph 3.4. 


